FRICTION TORQUE IN A ROTATING FIELD AND
THE MAGNETORHEOLOGICAL EFFECT IN
COLLOIDAL FERROMAGNETICS

E. E. Bibik and V. E. Skobochkin UDC 532.135:538.221

It is shown on the basis of theory and experiment that interaction between particles produces
a friction torque in a rotating field or a force in a stationary field, which does not depend on
the rotational frequency or on the rate of shear, respectively.

The idea of Rosensweig [1] of using "magnetic fluids," i.e., colloidal ferromagnetics for a direct
conversion of heat into mechanical energy or for other purposes has been recently followed up by several
articles [2-5] which explain the phenomena revealed in experiments [6-9]: by an increased viscosity of
these fluids in a magnetic field (magnetorheological effect) [2, 3] and by the appearance of a forque in a
rotating field which will rotate the vessel containing such a fluid about the field axis [4, 5, 9].

The authors of [2-5] do not connect these two effects, although both are similar in many aspects:
each is explained by the generation of microvortices around particles and either a rotation of particles by
an external magnetic rotating field [4, 5] or their streamlining by the fluid with a velocity gradient q in a
stationary field resisting such a rotation. In the latter case, the velocity gradient produces a circulation
of the fluid around a particle. In both cases the rotation of particles relative to the medium (or of the
medium relative to particles) results in an additional dissipation of energy and the appearance of macro-
forces (friction torque in a rotating field or an increased viscosity).

Such an approach does not take into account the interaction between particles, which in a magnetic
field leads to the formation of particle chains [10] oriented in the direction of the field and to a change in
the magnetic susceptibility [11].

In the steady-state mode the chains rotate with the field at its angular frequency w. On every par-
ticle there acts a viscous friction force approximately equal to the Stokes force F; = Bwrj, with B denoting
a certain coefficient and ri denoting the distance from the i-th particle to the center of the chain.

If r is the distance between neighboring particles, which depends on the magnitude of superficial
repulsion forces between the particles {12], then rj = ir if there is an odd number of particles and rj
= (i—0.5)r if there is an even number of particles in the chain.

v/2
The shearing force at the chain center is F(v) = Bw 2 r;. The results of summation for an even and
=1

an odd v are almost the same, except for the correction term ~1/v%, and equal to

F(v) = —;— Braw?. ' (1)

v/2
In ananalogous manner one finds the friction torque of a chain M, = 2 2 Fijri. Here M, = (1/12)Bwri?,

=l

accurately within —1/v, and the specific {per unit volume) friction torque
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M=M, L —1 nBoriv?, (2)
v 12

where n is the number of particles and n/v is the number of particles per unit volume.

The equilibrium number of particles in a chain is determined by the strength of the chain. Under
surface forces which act for a much shorter duration than dipole forces and in a strong external field (H
> m/r’) a chain is subject to

3m?

Fv)y~ 3

> 3

where m denotes the mean magnetic moment of a particle. In the case of single-domain particles m
= mL(mH/kT), where L is the Langevin function and m is the constant moment of a particle. Combining
(1), (2), and (3), we obtain
;;1"2
Mo 2n "73—, (4)
i.e., the friction torque due to interaction between particles is numerically equal to the specific energy of
magnetic interaction between such particles and does not depend on B, w, and v. The total friction torque

M= M-+ M, (5)

includes torque M which is due to the intrinsic rotation of particles and which is a function of B as well as
of w. According to [9], for instance, M, = penw (p is the particle form factor, ¢ is the volume concen-
tration of particles in the dispersion, and 5 is the viscosity of the medium).
1t follows from (4) and (5) that M = lim M= 0, which explains the dependence of the effect on the
@0
angular frequency of the rotating field. As the radius of action of superficial repulsion forces decreases,
the interaction torque M increases sharply and, at low frequencies (w £100 sec™), exceeds M, by a few
orders of magnitude — the torque M, having been considered at all only in [2-9] anyway. At n= 1018
andm =~ 2-10718 erg/Oe, which are usual values for colloidal ferromagnetics, the equilibrium distance .
between particles is r = 3-107% em [11], 7 = 1072 P, and ¢ = mn/Ig = 0.01 (where Ig =~ 200 G is the satura-
tion magnetization of high-dispersion magnetite [13]), in a field of intensity H = 1000 Oe and with frequency
w =103 sec™!
. —32
My= 2100 210 1o 6001102108,
27.10718
mH  2.107%.108
KT 41074
The first term represents the interaction effect and the second term répresents the contribution of intrinsic

particle rotation. The latter term may be somewhat larger, owing to the solvation of particles or the pres-
ence of adsorption and ionic layers [7, 8].

=5 L~1-—02=08; [*= 0,64 My =20 +06.

In a simple shear flow the velocity gradient ¢ = w and, in a magnetic field perpendicular to the slip
planes, the chains are subject to the same forces as in a rotating field. Under these conditions the fric-
tion force due to energy dissipation in the chains is numerically equal to M:

e

Fg=Mo2n T (6)

Analogously to (5), the total force
Fp=F,+ Fg+ Fg ] {7
ornp =ng + g+ ng. Here Ng = Fg/q is the structural viscosity, 7, + Mg =Ne(l + pg + ...) is the Einstein-

ian viscosity in the field [2, 3, 14], i.e., the viscosity of a completely broken down structure {15], and 7,
is the viscosity of the medium. If the correction term —1/v is not omitted in (2), then Fg = M ~ v%(1-1/»)
and at large gradients v — 1, Fg— 0, and thus nT — o + . It is easy to see that expression (7) agrees
with the Shvedov—Bingham equation. The inverse proportionality between g and g according to Eq. (6)
has been confirmed by experimental data on the electroviscosity effect [16, 17], which is analogous to the
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Fig. 1. Friction torque M (dyne/cm?) as a function of the angular
frequency w (sec™') and of the field intensity H (Oe), for a barium
hexaferrite suspension (¢ = 0.115 cm®/cm?®: 1) in spindle oil; 2)
in octane with a 0.3% trace of oleinic acid; a) at 200 Oe; b) at 400
Oe; c) at 800 Oe.

Fig. 2. Friction force Fr (dyne/cm?) of barium hexaferrite in
spindle oil (¢ = 0.115 cm®/cm®), as a function of the velocity gra-
dient g (sec™!) and of the field intensity H (Oe): 1) H = 0; 2) 220
Oe; 3) 430 Oe; 4) 850 Oe.

magnetoviscosity effect, and by measurements of F and M on suspensions of magnetic materials (Figs.
1, 2, and 3). The friction torque in a rotating magnetic field was measured by the twist angle of a cylindri-
cal vial containing colloidal fluid and suspended from an elastic string. The data in [18] on the perform-
ance of magnetic couplings are also in accord with formula (6): Evidently, a relation similar to (8) is
valid, i.e., the structural component of viscous friction forces is equal to the specific energy of particle
interaction also in the case of three-dimensional structures, regardless of the nature of the interaction
forces.
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Fig. 3. Friction torque My (dyne/cm?) (1, 2, 3) and fric-
tionforce Fp (dyne/cmz) (4) as functions of the square of
the magnetization 12 (G)? for barium hexaferrite suspension:
1)inoctane ¢ = 0.182 cm?®/cm?; 2)inoctane witha 0.53%:
trace of oleinicacid, ¢ = 0.115cm?%/cm?®; 3,4)in spindle
oil, ¢ = 0.115 cm®/cm?®.

476



If the results of measurements are represented in terms of an MT = M(I% relation, then an intercept
M(0) # 0 will be noted on the axis of ordinates (Fig. 3). This means that bonds between particles are pro-
duced spontaneously too, in the absence of an external field and without residual induction. Particle con-
glomerations have a complex structure outside the field, but within the field they straighten out into chains
which contribute to the total torque Mt independently of I. In some of these chains the bond between par-
ticles is stronger, apparently, owing to the action of molecular coupling forces. These stronger chain
aggregates, unlike the others, retain their size (the number of particles in a chain) according to (1), i.e.,
behave like rigid elongated particles and they contribute to the total torque M an amount proportional to
nw. This, as well as the solvation of particles [6-8] explains that (1/9)(dMp/dw) is usually larger than
pe at a given concentration of particles ¢. Instead of (5), therefore, one may write

2 -
Mz =M(0)+ 2025 + pgno, (8

where p is the average form factor depending on the number of particles in rigid chain aggregates.

The formula for Fr7 will be modified analogously, with F(0) = M(0) having the definite significance
of the limit shearing stress outside the field. It is to be noted that in a system of strongly interacting di-
pole particles (mz/r3 > kT, with k denoting the Boltzmann constant and T denoting the temperature) there
can be no regular distribution of particles in a suspension [19] or sol [20]. In this case

3
F(O)z,?[f(%)- (9)
Here Is = mn and (¥)® = n™! is the average volume per particle. When ¥ = r (uniform distribution of par-
ticles over the volume), then (9) becomes the well-known Volarovich—Gutkin equation [19]. Equation (9)
agrees sufficiently well with the results of measurements (see Fig. 3). The noticeable difference be-
tween quantities My and Fr must be attributed to the conditions under which F was measured (in a
Couette viscometer with a radial magnetic field); namely on the suspension acted some gradient of the
field intensity which, apparently, compressed the layer of particles in the viscometer gap while weakening
their coupling to the outer active instrument surface.

From the experiment in a rotating field with the magnetorheological effect one can determine the
equilibrium distance r between particles in chains, or the dimensionless distance r/T. From the data in
Fig. 3 we have

3 ‘72
(L) =200 g 167,
r aMm

If the radius of a particle is much larger than the radius of action of superficial repulsion forces, then
r = 2¢ and nr’ = 2¢. In a barium hexaferrite suspension ¢ = 0.115, i.e., 2¢ approaches the value found
from measurements of the friction torque. Thus, with the relations derived here cne can quite reliably
estimate the range of action of superficial repulsion forces between particles. At a certain distance (r
= 2a), the magnitude of the induced or the rigid electric dipole of particles can be determined from the
electrorheological effect.
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